Solega Co. Done For Your E-Commerce solutions.
  • Home
  • E-commerce
  • Start Ups
  • Project Management
  • Artificial Intelligence
  • Investment
  • More
    • Cryptocurrency
    • Finance
    • Real Estate
    • Travel
No Result
View All Result
  • Home
  • E-commerce
  • Start Ups
  • Project Management
  • Artificial Intelligence
  • Investment
  • More
    • Cryptocurrency
    • Finance
    • Real Estate
    • Travel
No Result
View All Result
No Result
View All Result
Home Artificial Intelligence

Preparing Data for BERT Training

Solega Team by Solega Team
December 7, 2025
in Artificial Intelligence
Reading Time: 28 mins read
0
Preparing Data for BERT Training
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


“”“Process the WikiText dataset for training the BERT model. Using Hugging Face

datasets library.

““”

 

import time

import random

from typing import Iterator

 

import tokenizers

from datasets import load_dataset, Dataset

 

# path and name of each dataset

DATASETS = {

    “wikitext-2”: (“wikitext”, “wikitext-2-raw-v1”),

    “wikitext-103”: (“wikitext”, “wikitext-103-raw-v1”),

}

PATH, NAME = DATASETS[“wikitext-103”]

TOKENIZER_PATH = “wikitext-103_wordpiece.json”

 

 

def create_docs(path: str, name: str, tokenizer: tokenizers.Tokenizer) -> list[list[list[int]]]:

    “”“Load wikitext dataset and extract text as documents”“”

    dataset = load_dataset(path, name, split=“train”)

    docs: list[list[list[int]]] = []

    for line in dataset[“text”]:

        line = line.strip()

        if not line or line.startswith(“=”):

            docs.append([])   # new document encountered

        else:

            tokens = tokenizer.encode(line).ids

            docs[–1].append(tokens)

    docs = [doc for doc in docs if doc]  # remove empty documents

    return docs

 

 

def create_dataset(

    docs: list[list[list[int]]],

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    doc_repeat: int = 10,

    mask_prob: float = 0.15,

    short_seq_prob: float = 0.1,

    max_predictions_per_seq: int = 20,

) -> Iterator[dict]:

    “”“Generate samples from all documents”“”

    doc_indices = list(range(len(docs))) * doc_repeat

    for doc_idx in doc_indices:

        yield from generate_samples(doc_idx, docs, tokenizer, max_seq_length, mask_prob, short_seq_prob, max_predictions_per_seq)

 

def generate_samples(

    doc_idx: int,

    all_docs: list[list[list[int]]],

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    mask_prob: float = 0.15,

    short_seq_prob: float = 0.1,

    max_predictions_per_seq: int = 20,

) -> Iterator[dict]:

    “”“Generate samples from a given document”“”

    # number of tokens to extract from this doc, excluding [CLS], [SEP], [SEP]

    target_length = max_seq_length – 3

    if random.random() < short_seq_prob:

        # shorter sequence is used 10% of the time

        target_length = random.randint(2, target_length)

 

    # copy the document

    chunks = []

    for chunk in all_docs[doc_idx]:

        chunks.append(chunk)

 

    # exhaust chunks and create samples

    while chunks:

        # scan until target token length

        running_length = 0

        end = 1

        while end < len(chunks) and running_length < target_length:

            running_length += len(chunks[end–1])

            end += 1

        # randomly separate the chunk into two segments

        sep = random.randint(1, end–1) if end > 1 else 1

        sentence_a = [tok for chunk in chunks[:sep] for tok in chunk]

        sentence_b = [tok for chunk in chunks[sep:end] for tok in chunk]

        # sentence B: may be from another document

        if not sentence_b or random.random() < 0.5:

            # find another document (must not be the same as doc_idx)

            b_idx = random.randint(0, len(all_docs)–2)

            if b_idx >= doc_idx:

                b_idx += 1

            # sentence B starts from a random position in the new document

            sentence_b = []

            running_length = len(sentence_a)

            i = random.randint(0, len(all_docs[b_idx])–1)

            while i < len(all_docs[b_idx]) and running_length < target_length:

                sentence_b.extend(all_docs[b_idx][i])

                running_length += len(all_docs[b_idx][i])

                i += 1

            is_random_next = True

            chunks = chunks[sep:]

        else:

            is_random_next = False

            chunks = chunks[end:]

        # create a sample from the pair

        yield create_sample(sentence_a, sentence_b, is_random_next, tokenizer, max_seq_length, mask_prob, max_predictions_per_seq)

 

def create_sample(

    sentence_a: list[list[int]],

    sentence_b: list[list[int]],

    is_random_next: bool,

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    mask_prob: float = 0.15,

    max_predictions_per_seq: int = 20,

) -> dict:

    “”“Create a sample from a pair of sentences”“”

    # Collect id of special tokens

    cls_id = tokenizer.token_to_id(“[CLS]”)

    sep_id = tokenizer.token_to_id(“[SEP]”)

    mask_id = tokenizer.token_to_id(“[MASK]”)

    pad_id = tokenizer.padding[“pad_id”]

    # adjust length to fit the max sequence length

    truncate_seq_pair(sentence_a, sentence_b, max_seq_length–3)

    num_pad = max_seq_length – len(sentence_a) – len(sentence_b) – 3

    # create unmodified tokens sequence

    tokens = [cls_id] + sentence_a + [sep_id] + sentence_b + [sep_id] + ([pad_id] * num_pad)

    seg_id = [0] * (len(sentence_a) + 2) + [1] * (len(sentence_b) + 1) + [–1] * num_pad

    assert len(tokens) == len(seg_id) == max_seq_length

    # create the prediction targets

    cand_indices = [i for i, tok in enumerate(tokens) if tok not in [cls_id, sep_id, pad_id]]

    random.shuffle(cand_indices)

    num_predictions = int(round((len(sentence_a) + len(sentence_b)) * mask_prob))

    num_predictions = min(max_predictions_per_seq, max(1, num_predictions))

    mlm_positions = sorted(cand_indices[:num_predictions])

    mlm_labels = []

    for i in mlm_positions:

        mlm_labels.append(tokens[i])

        # prob 0.8 replace with [MASK], prob 0.1 replace with random word, prob 0.1 keep original

        if random.random() < 0.8:

            tokens[i] = mask_id

        elif random.random() < 0.5:

            tokens[i] = random.randint(4, tokenizer.get_vocab_size()–1)

    # randomly mask some tokens

    ret = {

        “tokens”: tokens,

        “segment_ids”: seg_id,

        “is_random_next”: is_random_next,

        “masked_positions”: mlm_positions,

        “masked_labels”: mlm_labels,

    }

    return ret

 

 

def truncate_seq_pair(sentence_a: list[int], sentence_b: list[int], max_num_tokens: int) -> None:

    “”“Truncate a pair of sequences until below a maximum sequence length.”“”

    while len(sentence_a) + len(sentence_b) > max_num_tokens:

        # pick the longer sentence to remove tokens from

        candidate = sentence_a if len(sentence_a) > len(sentence_b) else sentence_b

        # remove one token from either end in equal probabilities

        if random.random() < 0.5:

            candidate.pop(0)

        else:

            candidate.pop()

 

 

if __name__ == “__main__”:

    print(time.time(), “started”)

    tokenizer = tokenizers.Tokenizer.from_file(TOKENIZER_PATH)

    print(time.time(), “loaded tokenizer”)

    docs = create_docs(PATH, NAME, tokenizer)

    print(time.time(), “created docs with %d documents” % len(docs))

    dataset = Dataset.from_generator(create_dataset, gen_kwargs={“docs”: docs, “tokenizer”: tokenizer})

    print(time.time(), “created dataset from generator”)

    # Save dataset to parquet file

    dataset.to_parquet(“wikitext-103_train_data.parquet”)

    print(time.time(), “saved dataset to parquet file”)

    # Load dataset from parquet file

    dataset = Dataset.from_parquet(“wikitext-103_train_data.parquet”, streaming=True)

    print(time.time(), “loaded dataset from parquet file”)

    # Print a few samples

    for i, sample in enumerate(dataset):

        print(i)

        print(sample)

        print()

        if i >= 3:

            break

    print(time.time(), “finished”)



Source link

Tags: BERTDataPreparingTraining
Previous Post

Bitcoin Market Records 21% Crash In November Spot Trading Volume

Next Post

OpenAI says it’s turned off app suggestions that look like ads

Next Post
OpenAI says it’s turned off app suggestions that look like ads

OpenAI says it’s turned off app suggestions that look like ads

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR POSTS

  • Health-specific embedding tools for dermatology and pathology

    Health-specific embedding tools for dermatology and pathology

    0 shares
    Share 0 Tweet 0
  • 20 Best Resource Management Software of 2025 (Free & Paid)

    0 shares
    Share 0 Tweet 0
  • 10 Ways To Get a Free DoorDash Gift Card

    0 shares
    Share 0 Tweet 0
  • How To Save for a Baby in 9 Months

    0 shares
    Share 0 Tweet 0
  • How to Make a Stakeholder Map

    0 shares
    Share 0 Tweet 0
Solega Blog

Categories

  • Artificial Intelligence
  • Cryptocurrency
  • E-commerce
  • Finance
  • Investment
  • Project Management
  • Real Estate
  • Start Ups
  • Travel

Connect With Us

Recent Posts

10 RAG Improvements That Could Make Your RAG Advanced: A Complete Guide with Examples

10 RAG Improvements That Could Make Your RAG Advanced: A Complete Guide with Examples

January 12, 2026
Bitcoin Whales Keep Buying, 100+ BTC Holders Hit New Highs

Bitcoin Whales Keep Buying, 100+ BTC Holders Hit New Highs

January 12, 2026

© 2024 Solega, LLC. All Rights Reserved | Solega.co

No Result
View All Result
  • Home
  • E-commerce
  • Start Ups
  • Project Management
  • Artificial Intelligence
  • Investment
  • More
    • Cryptocurrency
    • Finance
    • Real Estate
    • Travel

© 2024 Solega, LLC. All Rights Reserved | Solega.co