[ad_1] <br><div> <head> <meta charset="UTF-8"/> <title>Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data - MachineLearningMastery.com</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <link rel="pingback" href="https://machinelearningmastery.com/xmlrpc.php"/> <meta name="robots" content="index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1"/> <link rel="dns-prefetch" href="https://ads.adthrive.com/"/><link rel="preconnect" href="https://ads.adthrive.com/"/><link rel="preconnect" href="https://ads.adthrive.com/" crossorigin=""/> <!-- Mobile viewport scale --> <meta content="initial-scale=1.0, maximum-scale=1.0, user-scalable=yes" name="viewport"/> <!-- This site is optimized with the Yoast SEO plugin v26.0 - https://yoast.com/wordpress/plugins/seo/ --> <title>Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data - MachineLearningMastery.com</title> <link rel="canonical" href="https://machinelearningmastery.com/algorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data/"/> <meta property="og:locale" content="en_US"/> <meta property="og:type" content="article"/> <meta property="og:title" content="Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data - MachineLearningMastery.com"/> <meta property="og:description" content="In this article, you will learn how three widely used classifiers behave on class-imbalanced problems and the concrete tactics that make them work in practice."/> <meta property="og:url" content="https://machinelearningmastery.com/algorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data/"/> <meta property="og:site_name" content="MachineLearningMastery.com"/> <meta property="article:publisher" content="https://www.facebook.com/MachineLearningMastery/"/> <meta property="article:published_time" content="2025-10-03T14:11:09+00:00"/> <meta property="article:modified_time" content="2025-10-03T14:12:47+00:00"/> <meta property="og:image" content="https://machinelearningmastery.com/wp-content/uploads/2025/09/mlm-gulati-algorithm-showdown-imbalanced-data-1024x683.png"/> <meta property="og:image:width" content="1024"/> <meta property="og:image:height" content="683"/> <meta property="og:image:type" content="image/png"/> <meta name="author" content="Jayita Gulati"/> <meta name="twitter:label1" content="Written by"/> <meta name="twitter:data1" content="Jayita Gulati"/> <meta name="twitter:label2" content="Est. reading time"/> <meta name="twitter:data2" content="6 minutes"/> <!-- / Yoast SEO plugin. --> <link rel="dns-prefetch" href="https://cdn.jsdelivr.net"/> <link rel="alternate" type="application/rss+xml" title="MachineLearningMastery.com » Feed" href="https://feeds.feedburner.com/MachineLearningMastery"/> <link rel="alternate" type="application/rss+xml" title="MachineLearningMastery.com » Comments Feed" href="https://machinelearningmastery.com/comments/feed/"/> <link rel="alternate" type="application/rss+xml" title="MachineLearningMastery.com » Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data Comments Feed" href="https://machinelearningmastery.com/algorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data/feed/"/> <!-- This site uses the Google Analytics by MonsterInsights plugin v9.6.0 - Using Analytics tracking - https://www.monsterinsights.com/ --> <!-- / Google Analytics by MonsterInsights --> <!-- machinelearningmastery.com is managing ads with Advanced Ads 2.0.9 – https://wpadvancedads.com/ --> <link rel="stylesheet" id="urvanov_syntax_highlighter-css" href="https://machinelearningmastery.com/wp-content/plugins/urvanov-syntax-highlighter/css/min/urvanov_syntax_highlighter.min.css?ver=2.8.40" type="text/css" media="all"/> <link rel="stylesheet" id="wp-block-library-css" href="https://machinelearningmastery.com/wp-includes/css/dist/block-library/style.min.css?ver=6.8.3" type="text/css" media="all"/> <link rel="stylesheet" id="ssb-front-css-css" href="https://machinelearningmastery.com/wp-content/plugins/simple-social-buttons/assets/css/front.css?ver=6.2.0" type="text/css" media="all"/> <link rel="stylesheet" id="crp-style-grid-css" href="https://machinelearningmastery.com/wp-content/plugins/contextual-related-posts/css/grid.min.css?ver=4.1.0" type="text/css" media="all"/> <link rel="stylesheet" id="dashicons-css" href="https://machinelearningmastery.com/wp-includes/css/dashicons.min.css?ver=6.8.3" type="text/css" media="all"/> <link rel="stylesheet" id="woo-testimonials-css-css" href="https://machinelearningmastery.com/wp-content/themes/canvas-new/includes/integrations/testimonials/css/testimonials.css?ver=6.8.3" type="text/css" media="all"/> <link rel="stylesheet" id="theme-stylesheet-css" href="https://machinelearningmastery.com/wp-content/themes/canvas-new/style.css?ver=5.9.21" type="text/css" media="all"/> <!--[if lt IE 9]> <link href="https://machinelearningmastery.com/wp-content/themes/canvas-new/css/non-responsive.css" rel="stylesheet" type="text/css" /> <style type="text/css">.col-full, #wrapper { width: 1280px; max-width: 1280px; } #inner-wrapper { padding: 0; } body.full-width #header, #nav-container, body.full-width #content, body.full-width #footer-widgets, body.full-width #footer { padding-left: 0; padding-right: 0; } body.fixed-mobile #top, body.fixed-mobile #header-container, body.fixed-mobile #footer-container, body.fixed-mobile #nav-container, body.fixed-mobile #footer-widgets-container { min-width: 1280px; padding: 0 1em; } body.full-width #content { width: auto; padding: 0 1em;}</style> <![endif]--> <!-- Adjust the website width --> <link rel="https://api.w.org/" href="https://machinelearningmastery.com/wp-json/"/><link rel="alternate" title="JSON" type="application/json" href="https://machinelearningmastery.com/wp-json/wp/v2/posts/21790"/><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://machinelearningmastery.com/xmlrpc.php?rsd"/> <link rel="shortlink" href="https://machinelearningmastery.com/?p=21790"/> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://machinelearningmastery.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmachinelearningmastery.com%2Falgorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data%2F"/> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://machinelearningmastery.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmachinelearningmastery.com%2Falgorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data%2F&format=xml"/> <!-- Open Graph Meta Tags generated by Simple Social Buttons 6.2.0 --> <meta property="og:title" content="Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data - MachineLearningMastery.com"/> <meta property="og:type" content="article"/> <meta property="og:description" content="In this article, you will learn how three widely used classifiers behave on class-imbalanced problems and the concrete tactics that make them work in practice."/> <meta property="og:url" content="https://machinelearningmastery.com/algorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data/"/> <meta property="og:site_name" content="MachineLearningMastery.com"/> <meta property="og:image" content="https://machinelearningmastery.com/wp-content/uploads/2025/09/mlm-gulati-algorithm-showdown-imbalanced-data.png"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:description" content="In this article, you will learn how three widely used classifiers behave on class-imbalanced problems and the concrete tactics that make them work in practice."/> <meta name="twitter:title" content="Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data - MachineLearningMastery.com"/> <meta property="twitter:image" content="https://machinelearningmastery.com/wp-content/uploads/2025/09/mlm-gulati-algorithm-showdown-imbalanced-data.png"/> <!-- Custom CSS Styling --> <!-- Custom Favicon --> <link rel="shortcut icon" href="https://machinelearningmastery.com/wp-content/uploads/2019/09/icon-16x16.png"/> <!-- Options Panel Custom CSS --> <!-- Woo Shortcodes CSS --> <link href="https://machinelearningmastery.com/wp-content/themes/canvas-new/functions/css/shortcodes.css" rel="stylesheet" type="text/css"/> <!-- Custom Stylesheet --> <link href="https://machinelearningmastery.com/wp-content/themes/canvas-new/custom.css" rel="stylesheet" type="text/css"/> <!-- Theme version --> <meta name="generator" content="Canvas 5.9.21"/> <meta name="generator" content="WooFramework 6.2.9"/> <!-- Google Tag Manager --> <!-- End Google Tag Manager --> <link rel="icon" href="https://machinelearningmastery.com/wp-content/uploads/2016/09/cropped-icon-32x32.png" sizes="32x32"/> <link rel="icon" href="https://machinelearningmastery.com/wp-content/uploads/2016/09/cropped-icon-192x192.png" sizes="192x192"/> <link rel="apple-touch-icon" href="https://machinelearningmastery.com/wp-content/uploads/2016/09/cropped-icon-180x180.png"/> <meta name="msapplication-TileImage" content="https://machinelearningmastery.com/wp-content/uploads/2016/09/cropped-icon-270x270.png"/> </head> <body class="wp-singular post-template-default single single-post postid-21790 single-format-standard wp-custom-logo wp-theme-canvas-new mega-menu-primary-menu gecko alt-style-default two-col-left width-1280 two-col-left-1280 full-width full-header aa-prefix-machi-" id="wp_automatic_ReadabilityBody"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-TS7H3T8L" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --></body> </div> <br>[ad_2] <br><a href="https://machinelearningmastery.com/algorithm-showdown-logistic-regression-vs-random-forest-vs-xgboost-on-imbalanced-data/">Source link </a>