import dataclasses
import os
Ā
import datasets
import tqdm
import tokenizers
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.lr_scheduler as lr_scheduler
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
Ā
# Build the model
@dataclasses.dataclass
class LlamaConfig:
Ā Ā Ā Ā “”“Define Llama model hyperparameters.”“”
Ā Ā Ā Ā vocab_size: int = 50000Ā Ā # Size of the tokenizer vocabulary
Ā Ā Ā Ā max_position_embeddings: int = 2048Ā Ā # Maximum sequence length
Ā Ā Ā Ā hidden_size: int = 768Ā Ā # Dimension of hidden layers
Ā Ā Ā Ā intermediate_size: int = 4*768Ā Ā # Dimension of MLP’s hidden layer
Ā Ā Ā Ā num_hidden_layers: int = 12Ā Ā # Number of transformer layers
Ā Ā Ā Ā num_attention_heads: int = 12Ā Ā # Number of attention heads
Ā Ā Ā Ā num_key_value_heads: int = 3Ā Ā # Number of key-value heads for GQA
Ā
Ā
class RotaryPositionEncoding(nn.Module):
Ā Ā Ā Ā “”“Rotary position encoding.”“”
Ā
Ā Ā Ā Ā def __init__(self, dim: int, max_position_embeddings: int) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā “”“Initialize the RotaryPositionEncoding module
Ā
Ā Ā Ā Ā Ā Ā Ā Ā Args:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā dim: The hidden dimension of the input tensor to which RoPE is applied
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā max_position_embeddings: The maximum sequence length of the input tensor
Ā Ā Ā Ā Ā Ā Ā Ā ““”
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā self.dim = dim
Ā Ā Ā Ā Ā Ā Ā Ā self.max_position_embeddings = max_position_embeddings
Ā Ā Ā Ā Ā Ā Ā Ā # compute a matrix of n\theta_i
Ā Ā Ā Ā Ā Ā Ā Ā N = 10_000.0
Ā Ā Ā Ā Ā Ā Ā Ā inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))
Ā Ā Ā Ā Ā Ā Ā Ā inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)
Ā Ā Ā Ā Ā Ā Ā Ā position = torch.arange(max_position_embeddings)
Ā Ā Ā Ā Ā Ā Ā Ā sinusoid_inp = torch.outer(position, inv_freq)
Ā Ā Ā Ā Ā Ā Ā Ā # save cosine and sine matrices as buffers, not parameters
Ā Ā Ā Ā Ā Ā Ā Ā self.register_buffer(“cos”, sinusoid_inp.cos())
Ā Ā Ā Ā Ā Ā Ā Ā self.register_buffer(“sin”, sinusoid_inp.sin())
Ā
Ā Ā Ā Ā def forward(self, x: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā “”“Apply RoPE to tensor x
Ā
Ā Ā Ā Ā Ā Ā Ā Ā Args:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā x: Input tensor of shape (batch_size, seq_length, num_heads, head_dim)
Ā
Ā Ā Ā Ā Ā Ā Ā Ā Returns:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Output tensor of shape (batch_size, seq_length, num_heads, head_dim)
Ā Ā Ā Ā Ā Ā Ā Ā ““”
Ā Ā Ā Ā Ā Ā Ā Ā batch_size, seq_len, num_heads, head_dim = x.shape
Ā Ā Ā Ā Ā Ā Ā Ā dtype = x.dtype
Ā Ā Ā Ā Ā Ā Ā Ā # transform the cosine and sine matrices to 4D tensor and the same dtype as x
Ā Ā Ā Ā Ā Ā Ā Ā cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
Ā Ā Ā Ā Ā Ā Ā Ā sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)
Ā Ā Ā Ā Ā Ā Ā Ā # apply RoPE to x
Ā Ā Ā Ā Ā Ā Ā Ā x1, x2 = x.chunk(2, dim=–1)
Ā Ā Ā Ā Ā Ā Ā Ā rotated = torch.cat((–x2, x1), dim=–1)
Ā Ā Ā Ā Ā Ā Ā Ā output = (x * cos) + (rotated * sin)
Ā Ā Ā Ā Ā Ā Ā Ā return output
Ā
Ā
class LlamaAttention(nn.Module):
Ā Ā Ā Ā “”“Grouped-query attention with rotary embeddings.”“”
Ā
Ā Ā Ā Ā def __init__(self, config: LlamaConfig) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā self.hidden_size = config.hidden_size
Ā Ā Ā Ā Ā Ā Ā Ā self.num_heads = config.num_attention_heads
Ā Ā Ā Ā Ā Ā Ā Ā self.head_dim = self.hidden_size // self.num_heads
Ā Ā Ā Ā Ā Ā Ā Ā self.num_kv_heads = config.num_key_value_headsĀ Ā # GQA: H_kv < H_q
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # hidden_size must be divisible by num_heads
Ā Ā Ā Ā Ā Ā Ā Ā assert (self.head_dim * self.num_heads) == self.hidden_size
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Linear layers for Q, K, V projections
Ā Ā Ā Ā Ā Ā Ā Ā self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
Ā Ā Ā Ā Ā Ā Ā Ā self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
Ā Ā Ā Ā Ā Ā Ā Ā self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
Ā Ā Ā Ā Ā Ā Ā Ā self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
Ā
Ā Ā Ā Ā def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā bs, seq_len, dim = hidden_states.size()
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Project inputs to Q, K, V
Ā Ā Ā Ā Ā Ā Ā Ā query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)
Ā Ā Ā Ā Ā Ā Ā Ā key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
Ā Ā Ā Ā Ā Ā Ā Ā value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Apply rotary position embeddings
Ā Ā Ā Ā Ā Ā Ā Ā query_states = rope(query_states)
Ā Ā Ā Ā Ā Ā Ā Ā key_states = rope(key_states)
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention
Ā Ā Ā Ā Ā Ā Ā Ā query_states = query_states.transpose(1, 2)
Ā Ā Ā Ā Ā Ā Ā Ā key_states = key_states.transpose(1, 2)
Ā Ā Ā Ā Ā Ā Ā Ā value_states = value_states.transpose(1, 2)
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Use PyTorch’s optimized attention implementation
Ā Ā Ā Ā Ā Ā Ā Ā # setting is_causal=True is incompatible with setting explicit attention mask
Ā Ā Ā Ā Ā Ā Ā Ā attn_output = F.scaled_dot_product_attention(
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā query_states,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā key_states,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā value_states,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā attn_mask=attn_mask,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā dropout_p=0.0,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā enable_gqa=True,
Ā Ā Ā Ā Ā Ā Ā Ā )
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, and then project output
Ā Ā Ā Ā Ā Ā Ā Ā attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)
Ā Ā Ā Ā Ā Ā Ā Ā attn_output = self.o_proj(attn_output)
Ā Ā Ā Ā Ā Ā Ā Ā return attn_output
Ā
Ā
class LlamaMLP(nn.Module):
Ā Ā Ā Ā “”“Feed-forward network with SwiGLU activation.”“”
Ā
Ā Ā Ā Ā def __init__(self, config: LlamaConfig) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā # Two parallel projections for SwiGLU
Ā Ā Ā Ā Ā Ā Ā Ā self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
Ā Ā Ā Ā Ā Ā Ā Ā self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
Ā Ā Ā Ā Ā Ā Ā Ā self.act_fn = F.siluĀ Ā # SwiGLU activation function
Ā Ā Ā Ā Ā Ā Ā Ā # Project back to hidden size
Ā Ā Ā Ā Ā Ā Ā Ā self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
Ā
Ā Ā Ā Ā def forward(self, x: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā # SwiGLU activation: multiply gate and up-projected inputs
Ā Ā Ā Ā Ā Ā Ā Ā gate = self.act_fn(self.gate_proj(x))
Ā Ā Ā Ā Ā Ā Ā Ā up = self.up_proj(x)
Ā Ā Ā Ā Ā Ā Ā Ā return self.down_proj(gate * up)
Ā
Ā
class LlamaDecoderLayer(nn.Module):
Ā Ā Ā Ā “”“Single transformer layer for a Llama model.”“”
Ā
Ā Ā Ā Ā def __init__(self, config: LlamaConfig) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
Ā Ā Ā Ā Ā Ā Ā Ā self.self_attn = LlamaAttention(config)
Ā Ā Ā Ā Ā Ā Ā Ā self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)
Ā Ā Ā Ā Ā Ā Ā Ā self.mlp = LlamaMLP(config)
Ā
Ā Ā Ā Ā def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā # First residual block: Self-attention
Ā Ā Ā Ā Ā Ā Ā Ā residual = hidden_states
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.input_layernorm(hidden_states)
Ā Ā Ā Ā Ā Ā Ā Ā attn_outputs = self.self_attn(hidden_states, rope=rope, attn_mask=attn_mask)
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = attn_outputs + residual
Ā
Ā Ā Ā Ā Ā Ā Ā Ā # Second residual block: MLP
Ā Ā Ā Ā Ā Ā Ā Ā residual = hidden_states
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.post_attention_layernorm(hidden_states)
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.mlp(hidden_states) + residual
Ā Ā Ā Ā Ā Ā Ā Ā return hidden_states
Ā
Ā
class LlamaModel(nn.Module):
Ā Ā Ā Ā “”“The full Llama model without any pretraining heads.”“”
Ā
Ā Ā Ā Ā def __init__(self, config: LlamaConfig) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā self.rotary_emb = RotaryPositionEncoding(
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā config.hidden_size // config.num_attention_heads,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā config.max_position_embeddings,
Ā Ā Ā Ā Ā Ā Ā Ā )
Ā
Ā Ā Ā Ā Ā Ā Ā Ā self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
Ā Ā Ā Ā Ā Ā Ā Ā self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
Ā Ā Ā Ā Ā Ā Ā Ā self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)
Ā
Ā Ā Ā Ā def forward(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā # Convert input token IDs to embeddings
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.embed_tokens(input_ids)
Ā Ā Ā Ā Ā Ā Ā Ā # Process through all transformer layers, then the final norm layer
Ā Ā Ā Ā Ā Ā Ā Ā for layer in self.layers:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = layer(hidden_states, rope=self.rotary_emb, attn_mask=attn_mask)
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.norm(hidden_states)
Ā Ā Ā Ā Ā Ā Ā Ā # Return the final hidden states
Ā Ā Ā Ā Ā Ā Ā Ā return hidden_states
Ā
Ā
class LlamaForPretraining(nn.Module):
Ā Ā Ā Ā def __init__(self, config: LlamaConfig) -> None:
Ā Ā Ā Ā Ā Ā Ā Ā super().__init__()
Ā Ā Ā Ā Ā Ā Ā Ā self.base_model = LlamaModel(config)
Ā Ā Ā Ā Ā Ā Ā Ā self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
Ā
Ā Ā Ā Ā def forward(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:
Ā Ā Ā Ā Ā Ā Ā Ā hidden_states = self.base_model(input_ids, attn_mask)
Ā Ā Ā Ā Ā Ā Ā Ā return self.lm_head(hidden_states)
Ā
Ā
def create_causal_mask(batch: Tensor, dtype: torch.dtype = torch.float32) -> Tensor:
Ā Ā Ā Ā “”“Create a causal mask for self-attention.
Ā
Ā Ā Ā Ā Args:
Ā Ā Ā Ā Ā Ā Ā Ā batch: Batch of sequences, shape (batch_size, seq_len)
Ā Ā Ā Ā Ā Ā Ā Ā dtype: Data type of the mask
Ā
Ā Ā Ā Ā Returns:
Ā Ā Ā Ā Ā Ā Ā Ā Causal mask of shape (seq_len, seq_len)
Ā Ā Ā Ā ““”
Ā Ā Ā Ā batch_size, seq_len = batch.shape
Ā Ā Ā Ā mask = torch.full((seq_len, seq_len), float(‘-inf’), device=batch.device, dtype=dtype) \
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā .triu(diagonal=1)
Ā Ā Ā Ā return mask
Ā
Ā
def create_padding_mask(batch: Tensor, padding_token_id: int, dtype: torch.dtype = torch.float32) -> Tensor:
Ā Ā Ā Ā “”“Create a padding mask for a batch of sequences for self-attention.
Ā
Ā Ā Ā Ā Args:
Ā Ā Ā Ā Ā Ā Ā Ā batch: Batch of sequences, shape (batch_size, seq_len)
Ā Ā Ā Ā Ā Ā Ā Ā padding_token_id: ID of the padding token
Ā Ā Ā Ā Ā Ā Ā Ā dtype: Data type of the mask
Ā
Ā Ā Ā Ā Returns:
Ā Ā Ā Ā Ā Ā Ā Ā Padding mask of shape (batch_size, 1, seq_len, seq_len)
Ā Ā Ā Ā ““”
Ā Ā Ā Ā padded = torch.zeros_like(batch, device=batch.device, dtype=dtype) \
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā .masked_fill(batch == padding_token_id, float(‘-inf’))
Ā Ā Ā Ā mask = padded[:,:,None] + padded[:,None,:]
Ā Ā Ā Ā return mask[:, None, :, :]
Ā
Ā
# Generator function to create padded sequences of fixed length
class PretrainingDataset(torch.utils.data.Dataset):
Ā Ā Ā Ā def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā seq_length: int):
Ā Ā Ā Ā Ā Ā Ā Ā self.dataset = dataset
Ā Ā Ā Ā Ā Ā Ā Ā self.tokenizer = tokenizer
Ā Ā Ā Ā Ā Ā Ā Ā self.seq_length = seq_length
Ā Ā Ā Ā Ā Ā Ā Ā self.bot = tokenizer.token_to_id(“[BOT]”)
Ā Ā Ā Ā Ā Ā Ā Ā self.eot = tokenizer.token_to_id(“[EOT]”)
Ā Ā Ā Ā Ā Ā Ā Ā self.pad = tokenizer.token_to_id(“[PAD]”)
Ā
Ā Ā Ā Ā def __len__(self):
Ā Ā Ā Ā Ā Ā Ā Ā return len(self.dataset)
Ā
Ā Ā Ā Ā def __getitem__(self, index):
Ā Ā Ā Ā Ā Ā Ā Ā “”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens
Ā Ā Ā Ā Ā Ā Ā Ā are added. Clipped and padded to the sequence length.
Ā Ā Ā Ā Ā Ā Ā Ā ““”
Ā Ā Ā Ā Ā Ā Ā Ā seq = self.dataset[index][“text”]
Ā Ā Ā Ā Ā Ā Ā Ā tokens: list[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]
Ā Ā Ā Ā Ā Ā Ā Ā # pad to target sequence length
Ā Ā Ā Ā Ā Ā Ā Ā toklen = len(tokens)
Ā Ā Ā Ā Ā Ā Ā Ā if toklen < self.seq_length+1:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā pad_length = self.seq_length+1 – toklen
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā tokens += [self.pad] * pad_length
Ā Ā Ā Ā Ā Ā Ā Ā # return the sequence
Ā Ā Ā Ā Ā Ā Ā Ā x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64)
Ā Ā Ā Ā Ā Ā Ā Ā y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64)
Ā Ā Ā Ā Ā Ā Ā Ā return x, y
Ā
# Load the tokenizer
tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)
Ā
# Load the dataset
dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, split=“train”)
Ā
# Initialize the distributed environment
dist.init_process_group(backend=“nccl”)
rank = dist.get_rank()
local_rank = int(os.environ[“LOCAL_RANK”])
world_size = dist.get_world_size()
device = torch.device(f“cuda:{local_rank}”)
print(f“World size: {world_size}, Rank: {rank}, Local rank: {local_rank}. Using device: {device}”)
#torch.cuda.set_device(local_rank)
#torch.set_default_device(device)
Ā
# Create pretraining model with default config, then wrap it in DDP
model_config = LlamaConfig()
model = LlamaForPretraining(model_config).to(rank)
model = DDP(model, device_ids=[local_rank])Ā Ā # , output_device=local_rank)
model.train()
Ā
# print the model size
print(f“Model parameters size: {sum(p.numel() for p in model.parameters()) / 1024**2:.2f} M”)
print(f“Model buffers size: {sum(p.numel() for p in model.buffers()) / 1024**2:.2f} M”)
print(f“Model precision(s): {set([x.dtype for x in model.state_dict().values()])}”)
Ā
# Training parameters
epochs = 3
learning_rate = 1e–3
batch_size = 64
seq_length = 512
num_warmup_steps = 1000
PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)
Ā
# DataLoader, optimizer, scheduler, and loss function
dataset = PretrainingDataset(dataset, tokenizer, seq_length)
sampler = DistributedSampler(dataset, shuffle=False)
dataloader = torch.utils.data.DataLoader(
Ā Ā Ā Ā dataset,
Ā Ā Ā Ā batch_size=batch_size,
Ā Ā Ā Ā sampler=sampler,
Ā Ā Ā Ā pin_memory=True,Ā Ā # optional
Ā Ā Ā Ā shuffle=False,
Ā Ā Ā Ā num_workers=world_size,
)
optimizer = torch.optim.AdamW(
Ā Ā Ā Ā model.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e–8, weight_decay=0.1
)
num_training_steps = len(dataloader) * epochs
print(f“Number of training steps: {num_training_steps} = {len(dataloader)} * {epochs}”)
warmup_scheduler = lr_scheduler.LinearLR(
Ā Ā Ā Ā optimizer,
Ā Ā Ā Ā start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps
)
cosine_scheduler = lr_scheduler.CosineAnnealingLR(
Ā Ā Ā Ā optimizer,
Ā Ā Ā Ā T_max=num_training_steps – num_warmup_steps,
Ā Ā Ā Ā eta_min=0
)
scheduler = lr_scheduler.SequentialLR(
Ā Ā Ā Ā optimizer,
Ā Ā Ā Ā schedulers=[warmup_scheduler, cosine_scheduler],
Ā Ā Ā Ā milestones=[num_warmup_steps]
)
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_TOKEN_ID)
Ā
# start training
for epoch in range(epochs):
Ā Ā Ā Ā pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”)
Ā Ā Ā Ā sampler.set_epoch(epoch)Ā Ā # required for shuffling only
Ā Ā Ā Ā for batch_id, batch in enumerate(pbar):
Ā Ā Ā Ā Ā Ā Ā Ā if batch_id % 1000 == 0 and rank == 0:
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā # checkpoint the model and optimizer state, only on rank 0 process
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā torch.save({
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā “model”: model.module.state_dict() if isinstance(model, DDP) else model.state_dict(),
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā “optimizer”: optimizer.state_dict(),
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā “scheduler”: scheduler.state_dict(),
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā “epoch”: epoch,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā “batch”: batch_id,
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā }, f“llama_pretraining_checkpoint.pth”)
Ā Ā Ā Ā Ā Ā Ā Ā # get batched data, move from CPU to GPU
Ā Ā Ā Ā Ā Ā Ā Ā input_ids, target_ids = batch
Ā Ā Ā Ā Ā Ā Ā Ā input_ids = input_ids.to(device)
Ā Ā Ā Ā Ā Ā Ā Ā target_ids = target_ids.to(device)
Ā Ā Ā Ā Ā Ā Ā Ā # create attention mask: causal mask + padding mask
Ā Ā Ā Ā Ā Ā Ā Ā attn_mask = create_causal_mask(input_ids) + \
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā create_padding_mask(input_ids, PAD_TOKEN_ID)
Ā Ā Ā Ā Ā Ā Ā Ā # extract output from model
Ā Ā Ā Ā Ā Ā Ā Ā logits = model(input_ids, attn_mask)
Ā Ā Ā Ā Ā Ā Ā Ā # compute loss: cross-entropy between logits and target, ignoring padding tokens
Ā Ā Ā Ā Ā Ā Ā Ā loss = loss_fn(logits.view(–1, logits.size(–1)), target_ids.view(–1))
Ā Ā Ā Ā Ā Ā Ā Ā # backward with loss and gradient clipping by L2 norm to 1.0
Ā Ā Ā Ā Ā Ā Ā Ā optimizer.zero_grad()
Ā Ā Ā Ā Ā Ā Ā Ā loss.backward()
Ā Ā Ā Ā Ā Ā Ā Ā torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
Ā Ā Ā Ā Ā Ā Ā Ā optimizer.step()
Ā Ā Ā Ā Ā Ā Ā Ā scheduler.step()
Ā Ā Ā Ā Ā Ā Ā Ā pbar.set_postfix(loss=loss.item())
Ā Ā Ā Ā Ā Ā Ā Ā pbar.update(1)
Ā Ā Ā Ā pbar.close()
Ā
# Save the model
if rank == 0:
Ā Ā Ā Ā torch.save(model.state_dict(), “llama_pretraining_model.pth”)
Ā Ā Ā Ā torch.save(model.base_model.state_dict(), “llama_model.pth”)
Ā
# Clean up the distributed environment
dist.destroy_process_group()



